program demo1
! This program demonstrates how to compute the derivative of a scalar-valued function w.r.t to a scalar variable
! using complex-step and finite-difference methods.
use fordiff, only: rk, derivative
implicit none
real(rk) :: dfdx
print'(a)', 'f(x) = x**2 + 2.0*x'
print'(a)', 'compute derivative of f(x) w.r.t to x at x = 1.0'
! Compute derivative of a function using complex-step
dfdx = derivative(f=f1, x=1.0_rk, h=tiny(0.0_rk))
print'(a,g0,a)', 'dfdx = ', dfdx, ' (complex-step)'
! Compute derivative of a function using forward finite-difference
dfdx = derivative(f=f2, x=1.0_rk, h=1e-5_rk, method='forward')
print'(a,g0,a)', 'dfdx = ', dfdx, ' (forward finite-difference)'
! Compute derivative of a function using backward finite-difference
dfdx = derivative(f=f2, x=1.0_rk, h=1e-5_rk, method='backward')
print'(a,g0,a)', 'dfdx = ', dfdx, ' (backward finite-difference)'
! Compute derivative of a function using central finite-difference
dfdx = derivative(f=f2, x=1.0_rk, h=1e-5_rk, method='central')
print'(a,g0,a)', 'dfdx = ', dfdx, ' (central finite-difference)'
contains
! Define a scalar function of a scalar variable (complex)
function f1(x) result(f)
complex(rk), intent(in) :: x
complex(rk) :: f
f = x**2 + 2.0_rk*x
end function f1
! Define a scalar function of a scalar variable (real)
function f2(x) result(f)
real(rk), intent(in) :: x
real(rk) :: f
f = x**2 + 2.0_rk*x
end function f2
end program demo1