demo2 Program

Uses

  • program~~demo2~~UsesGraph program~demo2 demo2 module~fordiff fordiff program~demo2->module~fordiff

Calls

program~~demo2~~CallsGraph program~demo2 demo2 interface~derivative derivative program~demo2->interface~derivative proc~complex_step_derivative_t0_t0 complex_step_derivative_T0_T0 interface~derivative->proc~complex_step_derivative_t0_t0 proc~complex_step_derivative_t0_t1 complex_step_derivative_T0_T1 interface~derivative->proc~complex_step_derivative_t0_t1 proc~complex_step_derivative_t1_t1 complex_step_derivative_T1_T1 interface~derivative->proc~complex_step_derivative_t1_t1 proc~finite_difference_t0_t0 finite_difference_T0_T0 interface~derivative->proc~finite_difference_t0_t0 proc~finite_difference_t0_t1 finite_difference_T0_T1 interface~derivative->proc~finite_difference_t0_t1 proc~finite_difference_t1_t1 finite_difference_T1_T1 interface~derivative->proc~finite_difference_t1_t1 proc~finite_difference_backward_t0_t0 finite_difference_backward_T0_T0 proc~finite_difference_t0_t0->proc~finite_difference_backward_t0_t0 proc~finite_difference_central_t0_t0 finite_difference_central_T0_T0 proc~finite_difference_t0_t0->proc~finite_difference_central_t0_t0 proc~finite_difference_forward_t0_t0 finite_difference_forward_T0_T0 proc~finite_difference_t0_t0->proc~finite_difference_forward_t0_t0 proc~finite_difference_backward_t0_t1 finite_difference_backward_T0_T1 proc~finite_difference_t0_t1->proc~finite_difference_backward_t0_t1 proc~finite_difference_central_t0_t1 finite_difference_central_T0_T1 proc~finite_difference_t0_t1->proc~finite_difference_central_t0_t1 proc~finite_difference_forward_t0_t1 finite_difference_forward_T0_T1 proc~finite_difference_t0_t1->proc~finite_difference_forward_t0_t1 proc~finite_difference_backward_t1_t1 finite_difference_backward_T1_T1 proc~finite_difference_t1_t1->proc~finite_difference_backward_t1_t1 proc~finite_difference_central_t1_t1 finite_difference_central_T1_T1 proc~finite_difference_t1_t1->proc~finite_difference_central_t1_t1 proc~finite_difference_forward_t1_t1 finite_difference_forward_T1_T1 proc~finite_difference_t1_t1->proc~finite_difference_forward_t1_t1

Variables

Type Attributes Name Initial
real(kind=rk), dimension(:), allocatable :: dfdx

Functions

function f1(x) result(f)

Arguments

Type IntentOptional Attributes Name
complex(kind=rk), intent(in), dimension(:) :: x

Return Value complex(kind=rk)

function f2(x) result(f)

Arguments

Type IntentOptional Attributes Name
real(kind=rk), intent(in), dimension(:) :: x

Return Value real(kind=rk)


Source Code

program demo2

   ! This program demonstrates how to compute the derivative of a scalar-valued function w.r.t to a vector variable
   ! using complex-step and finite-difference methods.

   use fordiff, only: rk, derivative

   implicit none

   real(rk), dimension(:), allocatable :: dfdx

   print'(a)', 'f(x_1,x_2) = x_1**2 + 0.5*x_2**2'
   print'(a)', 'compute derivative of f(x_1,x_2) w.r.t. x_1 and x_2 at x_1 = 1, x_2 = -1'

   ! Compute derivative of a function using complex-step
   dfdx = derivative(f=f1, x=[1.0_rk, -1.0_rk], h=tiny(0.0_rk))
   print'(a,g0,", ",g0,a)', 'dfdx = ', dfdx, ' (complex-step)'

   ! Compute derivative of a function using forward finite-difference
   dfdx = derivative(f=f2, x=[1.0_rk, -1.0_rk], h=1e-5_rk, method='forward')
   print'(a,g0,", ",g0,a)', 'dfdx = ', dfdx, ' (forward finite-difference)'

   ! Compute derivative of a function using backward finite-difference
   dfdx = derivative(f=f2, x=[1.0_rk, -1.0_rk], h=1e-5_rk, method='backward')
   print'(a,g0,", ",g0,a)', 'dfdx = ', dfdx, ' (backward finite-difference)'

   ! Compute derivative of a function using central finite-difference
   dfdx = derivative(f=f2, x=[1.0_rk, -1.0_rk], h=1e-5_rk, method='central')
   print'(a,g0,", ",g0,a)', 'dfdx = ', dfdx, ' (central finite-difference)'

contains

   ! Define a scalar function of a vector variable (complex)
   function f1(x) result(f)
      complex(rk), dimension(:), intent(in) :: x
      complex(rk)                           :: f
      f = x(1)**2 + 0.5_rk*x(2)**2
   end function f1

   ! Define a scalar function of a vector variable (real)
   function f2(x) result(f)
      real(rk), dimension(:), intent(in) :: x
      real(rk)                           :: f
      f = x(1)**2 + 0.5_rk*x(2)**2
   end function f2

end program demo2