program demo2
! This program demonstrates how to compute the derivative of a scalar-valued function w.r.t to a vector variable
! using complex-step and finite-difference methods.
use fordiff, only: rk, derivative
implicit none
real(rk), dimension(:), allocatable :: dfdx
print'(a)', 'f(x_1,x_2) = x_1**2 + 0.5*x_2**2'
print'(a)', 'compute derivative of f(x_1,x_2) w.r.t. x_1 and x_2 at x_1 = 1, x_2 = -1'
! Compute derivative of a function using complex-step
dfdx = derivative(f=f1, x=[1.0_rk, -1.0_rk], h=tiny(0.0_rk))
print'(a,g0,", ",g0,a)', 'dfdx = ', dfdx, ' (complex-step)'
! Compute derivative of a function using forward finite-difference
dfdx = derivative(f=f2, x=[1.0_rk, -1.0_rk], h=1e-5_rk, method='forward')
print'(a,g0,", ",g0,a)', 'dfdx = ', dfdx, ' (forward finite-difference)'
! Compute derivative of a function using backward finite-difference
dfdx = derivative(f=f2, x=[1.0_rk, -1.0_rk], h=1e-5_rk, method='backward')
print'(a,g0,", ",g0,a)', 'dfdx = ', dfdx, ' (backward finite-difference)'
! Compute derivative of a function using central finite-difference
dfdx = derivative(f=f2, x=[1.0_rk, -1.0_rk], h=1e-5_rk, method='central')
print'(a,g0,", ",g0,a)', 'dfdx = ', dfdx, ' (central finite-difference)'
contains
! Define a scalar function of a vector variable (complex)
function f1(x) result(f)
complex(rk), dimension(:), intent(in) :: x
complex(rk) :: f
f = x(1)**2 + 0.5_rk*x(2)**2
end function f1
! Define a scalar function of a vector variable (real)
function f2(x) result(f)
real(rk), dimension(:), intent(in) :: x
real(rk) :: f
f = x(1)**2 + 0.5_rk*x(2)**2
end function f2
end program demo2