program demo2 ! This program demonstrates how to compute the derivative of a scalar-valued function w.r.t to a vector variable ! using complex-step and finite-difference methods. use fordiff, only: rk, derivative implicit none real(rk), dimension(:), allocatable :: dfdx print'(a)', 'f(x_1,x_2) = x_1**2 + 0.5*x_2**2' print'(a)', 'compute derivative of f(x_1,x_2) w.r.t. x_1 and x_2 at x_1 = 1, x_2 = -1' ! Compute derivative of a function using complex-step dfdx = derivative(f=f1, x=[1.0_rk, -1.0_rk], h=tiny(0.0_rk)) print'(a,g0,", ",g0,a)', 'dfdx = ', dfdx, ' (complex-step)' ! Compute derivative of a function using forward finite-difference dfdx = derivative(f=f2, x=[1.0_rk, -1.0_rk], h=1e-5_rk, method='forward') print'(a,g0,", ",g0,a)', 'dfdx = ', dfdx, ' (forward finite-difference)' ! Compute derivative of a function using backward finite-difference dfdx = derivative(f=f2, x=[1.0_rk, -1.0_rk], h=1e-5_rk, method='backward') print'(a,g0,", ",g0,a)', 'dfdx = ', dfdx, ' (backward finite-difference)' ! Compute derivative of a function using central finite-difference dfdx = derivative(f=f2, x=[1.0_rk, -1.0_rk], h=1e-5_rk, method='central') print'(a,g0,", ",g0,a)', 'dfdx = ', dfdx, ' (central finite-difference)' contains ! Define a scalar function of a vector variable (complex) function f1(x) result(f) complex(rk), dimension(:), intent(in) :: x complex(rk) :: f f = x(1)**2 + 0.5_rk*x(2)**2 end function f1 ! Define a scalar function of a vector variable (real) function f2(x) result(f) real(rk), dimension(:), intent(in) :: x real(rk) :: f f = x(1)**2 + 0.5_rk*x(2)**2 end function f2 end program demo2